Collect. Czech. Chem. Commun.
2011, 76, 957-988
https://doi.org/10.1135/cccc2011082
Published online 2011-07-07 13:16:17
Sugar-modified derivatives of cytostatic 6-(het)aryl-7-deazapurine nucleosides: 2′-C-methylribonucleosides, arabinonucleosides and 2′-deoxy-2′-fluoroarabinonucleosides
Petr Nauš, Pavla Perlíková, Radek Pohl and Michal Hocek*
Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
References
1a. J. Med. Chem. 2000, 43, 1817.
< M., Holý A., Votruba I., Dvořáková H.: https://doi.org/10.1021/jm991167+>
1b. Collect. Czech. Chem. Commun. 2001, 66, 483.
< M., Holý A., Votruba I., Dvořáková H.: https://doi.org/10.1135/cccc20010483>
1c. J. Med. Chem. 2005, 48, 5869.
< M., Nauš P., Pohl R., Votruba I., Furman P. A., Tharnish P. M., Otto M. J.: https://doi.org/10.1021/jm050335x>
2a. Collect. Czech. Chem. Commun. 2002, 67, 325.
< M., Holý A., Dvořáková H.: https://doi.org/10.1135/cccc20020325>
2b. Collect. Czech. Chem. Commun. 2003, 68, 837.
< M., Hocková D., Štambaský J.: https://doi.org/10.1135/cccc20030837>
3a. Collect. Czech. Chem. Commun. 2000, 65, 1683.
< M., Holý A., Votruba I., Dvořáková H.: https://doi.org/10.1135/cccc20001683>
3b. Collect. Czech. Chem. Commun. 2006, 71, 1484.
< M., Šilhár P., Pohl R.: https://doi.org/10.1135/cccc20061484>
4. Bioorg. Med. Chem. Lett. 2006, 16, 5290.
< M., Šilhár P., Shih I., Mabery E., Mackman R.: https://doi.org/10.1016/j.bmcl.2006.07.092>
5. J. Med. Chem. 2010, 53, 460.
< P., Pohl R., Votruba I., Džubák P., Hajdúch M., Ameral R., Birkus G., Wang T., Ray A. S., Mackman R., Cihlar T., Hocek M.: https://doi.org/10.1021/jm901428k>
6a. ChemMedChem 2010, 5, 1386.
< P., Nauš P., Pohl R., Votruba I., Snášel J., Zábranská H., Pichová I., Ameral R., Birkuš G., Cihlář T., Hocek M.: https://doi.org/10.1002/cmdc.201000192>
6b. Bioorg. Med. Chem. 2011, 19, 229.
< P., Pohl R., Votruba I., Shih R., Birkuš G., Cihlář T., Hocek M.: https://doi.org/10.1016/j.bmc.2010.11.029>
7a. Blood 1989, 74, 19.
M. J., Kantarjian H., Talpaz M., Redman J., Koller C., Barlogie B., Velasquez W., Plunkett W., Freireich E. J., McCredie K. B.:
7b. New. Engl. J. Med. 2000, 343, 1750.
< K. R., Peterson B. L., Appelbaum F. R., Kolitz J., Elias L., Shepherd L., Hines J., Threatte G. A., Larson R. A., Cheson B. D., Schiffer C. A.: https://doi.org/10.1056/NEJM200012143432402>
8a. Nat. Rev. Drug. Discov. 2006, 5, 855.
< P. L., Arthaud L., Cantrell W. R., Stephenson K., Secrist J. A., Weitman S.: https://doi.org/10.1038/nrd2055>
8b. Expert. Rev. Anticancer Ther. 2007, 7, 133.
< S., Kantarjian H.: https://doi.org/10.1586/14737140.7.2.113>
9. Antimicrob. Agents Chemother. 2004, 48, 3944.
< D. B., Eldrup A. B., Bartholomew L., Bhat B., Bosserman M. R., Ceccacci A., Colwell L. F., Fay J. F., Flores O. A., Getty K. L., Grobler J. A., LaFemina R. L., Markel E. J., Migliaccio G., Prhavc M., Stahlhut M. W., Tomassini J. E., MacCoss M., Hazuda D. J., Carroll S. S.: https://doi.org/10.1128/AAC.48.10.3944-3953.2004>
10. J. Med. Chem. 2004, 47, 5284.
< A. B., Prhavc M., Brooks J., Bhat B., Prakash T. P., Song Q. L., Bera S., Bhat N., Dande P., Cook P. D., Bennett C. F., Carroll S. S., Ball R. G., Bosserman M., Burlein C., Colwell L. F., Fay J. F., Flores O. A., Getty K., LaFemina R. L., Leone J., MacCoss M., McMasters D. R., Tomassini J. E., Von Langen D., Wolanski B., Olsen D. B.: https://doi.org/10.1021/jm040068f>
11a. J. Org. Chem. 2004, 69, 6257.
< M. M., Xu F., Waters M., Williams J. M., Savary K. A., Cowden C. J., Yang C., Buck E., Song Z. J., Tschaen D. M., Volante R. P., Reamer R. A., Grabowski E. J. J.: https://doi.org/10.1021/jo0491096>
11b. J. Org. Chem. 2004, 69, 7783.
< F., Simmons B., Savary K., Yang C. H., Reamer R. A.: https://doi.org/10.1021/jo049121y>
12. Methods Carbohydr. Chem. 1963, 2, 484.
R. L., BeMiller J. N.:
13a. Tetrahedron: Assymetry 2008, 19, 2417.
< K. V., da Cruz F. P., Hotchkiss D. J., Jenkinson S. F., Jones N. A., Weymouth-Wilson A. C., Clarkson R., Heinz T., Fleet G. W. J.: https://doi.org/10.1016/j.tetasy.2008.10.013>
13b. Tetrahedron Lett. 2006, 47, 315.
< D. J., Jenkinson S. F., Storer R., Heinz T., Fleet G. W. J.: https://doi.org/10.1016/j.tetlet.2005.11.018>
14. Tamerlani G., Salsini L., Lombardini I., Bartalucci D., Cipolletti G.: U.S. 6,891,036 B2 (2005).
15. Collect. Czech. Chem. Commun. 1971, 36, 3670.
J. J. K., Šmejkal J., Šorm F.:
16. Collect. Czech. Chem. Commun. 1969, 34, 857.
J. J. K., Šorm F.:
17. Synthesis 1976, 526.
< R., Tokoroyama T.: https://doi.org/10.1055/s-1976-24106>
18a. J. Am. Chem. Soc. 1989, 111, 6661.
< R. L., Danishefsky S.: https://doi.org/10.1021/ja00199a028>
18b. Tetrahedron Lett. 1995, 36, 427.
< Y., Kong F.: https://doi.org/10.1016/0040-4039(95)01763-8>
19a. J. Org. Chem. 2003, 68 , 6767.
< E. C., Daft J. R., Johnson E. M., Gannett P. M., Shaughnessy K. H.: https://doi.org/10.1021/jo034289p>
19b. Org. Biomol. Chem. 2006, 4, 2278.
P., Pohl R., Hocek M.:
20a. Nucleosides Nucleotides Nucleic Acids 2004, 23, 161.
X. J., Seth P. P., Ranken R., Swayze E. E., Migawa M. T.:
20b. Tetrahedron 2007, 63, 9850.
< F., Ming X.: https://doi.org/10.1016/j.tet.2007.06.107>
21. ChemBioChem 2003, 4, 1194.
< A., Ehrl R., Strömberg E.: https://doi.org/10.1002/cbic.200300531>
22a. J. Org. Chem. 2005, 70, 5833.
< S. G., Rajski S. R.: https://doi.org/10.1021/jo050205w>
22b. Tetrahedron Lett. 1980, 21, 1571.
< C. H. M., Jansse P. L., de Rooij J. F. M., van Boom J. H.: https://doi.org/10.1016/S0040-4039(00)92778-3>
23. J. Chem. Soc., Perkin Trans. 1 1995, 1543.
< B. K., Rao T. S., Revankar G. R.: https://doi.org/10.1039/p19950001543>
24. Synthesis 2006, 2005.
< F., Xu K., Chittepu P.: https://doi.org/10.1055/s-2006-942400>
25. Synlett 2011, 57.
< L. C., O’Shea P. D.: https://doi.org/10.1055/s-0030-1259085>
26. J. Org. Chem. 1985, 50, 3644.
< C. H., Brodfuehrer P. R., Brundidge S. P., Sapino C., Jr., Howell H. G: https://doi.org/10.1021/jo00219a048>