Collect. Czech. Chem. Commun.
2011, 76, 1103-1119
https://doi.org/10.1135/cccc2011081
Published online 2011-08-24 09:19:26
2-Thiozebularine: base modified nucleoside fully constrained in C3′-endo conformation in solution
Katarzyna Ebenrytera, Stefan Jankowskia, Janina Karolak-Wojciechowskab, Andrzej Fruzińskib, Julia Kaźmierczak-Baranskac, Barbara Nawrotc and Elzbieta Sochackaa,*
a Institute of Organic Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland
b Institute of General and Ecological Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland
c Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies of the Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
References
1. A., Holý A.: Collect. Czech. Chem. Commun. 1973, 38, 1381.
2. I., Holý A., Pischel H.: Collect. Czech. Chem. Commun. 1972, 37, 2213.
3. I., Holý A., Wightman R. H.: Biochim. Biophys. Acta 1973, 324, 14.
4. A., Ludzisa A., Votruba I., Šedivá K.: Collect. Czech. Chem. Commun. 1985, 50, 393.
<https://doi.org/10.1135/cccc19850393>
5. J. J., Jr., Haces A., Marquez V. E., McCormack J. J.: Nucleosides Nucleotides 1992, 11, 1781.
<https://doi.org/10.1080/07328319208017823>
6. L., Cheng X., Connolly B. A., Dickman M. J., Hurd P. J., Hornby D. P.: J. Mol. Biol. 2002, 321, 591.
<https://doi.org/10.1016/S0022-2836(02)00676-9>
7. J. C., Matsen C. B., Gonzalez F. A., Ye W., Greer S., Marquez V. E., Jones P. A., Selker E. U.: J. Nat. Cancer Inst. 2003, 95, 399.
8. I., Herdewijn P.: Eur. J. Med. Chem. 1998, 33, 515.
<https://doi.org/10.1016/S0223-5234(98)80016-0>
9. A., Perez-Rentero S., Garibotti A. V., Siddiqui M. A., Marquez V. E., Eritja R.: Chem. Biodiversity 2009, 6, 117.
<https://doi.org/10.1002/cbdv.200800239>
10. K., Kaczyńska I., Jankowski S., Karolak-Wojciechowska J., Sochacka E.: Bioorg. Med. Chem. 2011, 19, 2443.
<https://doi.org/10.1016/j.bmc.2011.02.008>
11. S.: Acta Chem. Scand., Ser. B 1978, 32, 478.
<https://doi.org/10.3891/acta.chem.scand.32b-0478>
12. S. W.: Acta Crystallogr., Sect. B 1977, 33, 80.
<https://doi.org/10.1107/S0567740877002623>
13. E. A., Rosenstein R. D., Shiono R., Abraham D. J., Trus B. L., Marsh R. E.: Acta Crystallogr., Sect. B 1975, 31, 102.
<https://doi.org/10.1107/S0567740875002178>
14. H., Sochacka E., Małkiewicz A., Kuo K., Gehrke C. W., Agris P. F.: J. Am. Chem. Soc. 1987, 109, 7171.
<https://doi.org/10.1021/ja00257a044>
15. T., Blackburn B. J., Lapper R. D., Smith I. C. P.: Biochemistry 1972, 11, 137.
<https://doi.org/10.1021/bi00752a001>
16. G. M.: Acta Crystallogr., Sect. A 2008, 64, 112.
<https://doi.org/10.1107/S0108767307043930>
17. A., Soerensen O. W.: Magn. Reson. Chem. 2001, 39, 49.
<https://doi.org/10.1002/1097-458X(200101)39:1<49::AID-MRC798>3.0.CO;2-S>
18. M. B., Nielsen S. E., Berg K.: J. Immunol. Methods 1989, 119, 203.
<https://doi.org/10.1016/0022-1759(89)90397-9>
19. T.: J. Immunol. Methods 1983, 65, 55.
<https://doi.org/10.1016/0022-1759(83)90303-4>
20. U., Vorbruggen H.: J. Org. Chem. 1974, 39, 3668.
<https://doi.org/10.1021/jo00939a011>
21. B. S., Scheibye S., Nilson N. H., Lawesson S. O.: Bull. Soc. Chim. Belg. 1987, 87, 223.
<https://doi.org/10.1002/bscb.19780870310>
22. C., Sundaraligham M.: J. Am. Chem. Soc. 1972, 94, 8205.
<https://doi.org/10.1021/ja00778a043>
23. Saenger W.: Principles of Nucleic Acids Structure, pp. 1–84. Springer Verlag, New York 1984.
24. M. C., MacDonald J. C., Bernstein J.: Acta Crystallogr., Sect. B 1990, 46, 256.
<https://doi.org/10.1107/S0108768189012929>
25. D. B.: Prog. Nucl. Magn. Reson. Spectrosc. 1978, 12, 135.
<https://doi.org/10.1016/0079-6565(78)80006-5>
26. J. P., Schwalbe H., Griesinger Ch.: Acc. Chem. Res. 1999, 32, 614.
<https://doi.org/10.1021/ar9600392>
27. S. S., van Buuren B. N. M.: Prog. Nucl. Magn. Reson. Spectrosc. 1998, 32, 287.
<https://doi.org/10.1016/S0079-6565(97)00023-X>
28. J. H., Wijmenga S. S., de Jong R., Heus H. A., Hilbers C. W., de Vroom E., van der Marel G. A., van Boom J. H.: Magn. Reson. Chem. 1996, 34, S156.
<https://doi.org/10.1002/(SICI)1097-458X(199612)34:133.0.CO;2-U >
29. van Wijk J., Altona C.: PSEUROT manual (version 6.2). Leiden University, Leiden 1995.
30. Thibadeuau Ch., Chattopadhyaya J.: Stereoelectronic Effects in Nucleosides and Nucleotides and their Structural Implications. Upsala University, Upsala 1999; http://www.boc.uu.se/.
31. Y., Yokoyama S., Miyazawa T., Watanabe K., Higuchi S.: FEBS Lett. 1983, 157, 95.
<https://doi.org/10.1016/0014-5793(83)81123-5>
32. S., Yamaizumi Z., Nishimura S., Miyazawa T.: Nucleic Acids Res. 1979, 6, 2611.
<https://doi.org/10.1093/nar/6.7.2611>
33. P. F., Sierzputowska-Gracz H., Smith W., Małkiewicz A., Sochacka E., Nawrot B.: J. Am. Chem. Soc. 1992, 114, 2652.
<https://doi.org/10.1021/ja00033a044>
34. R., Erikson L. A.: Phys. Chem. Chem. Phys. 2010, 12, 3690.
<https://doi.org/10.1039/b921646d>
35. R. U., Nagabhushan T. L., Paul B.: Can. J. Chem. 1972, 50, 773.
<https://doi.org/10.1139/v72-120>
36. D. B., Rajani P., Sadikot H.: J. Chem. Soc., Perkin Trans. 2 1985, 279.
<https://doi.org/10.1039/p29850000279>
37. Wüthrich K.: NMR of Proteins and Nucleic Acids, Chap. 11. John Wiley and Sons, New York 1986.
38. F. E., Wood D. J., Mc Caig T. N., Smith A., Holý A.: Can. J. Chem. 1974, 52, 497.
<https://doi.org/10.1139/v74-079>
39. M., Shugar D.: Biophys. Res. Commun. 1972, 48, 636.
<https://doi.org/10.1016/0006-291X(72)90395-6>

