Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1937, 9, 150-167
https://doi.org/10.1135/cccc19370150

Polarographic studies with the dropping mercury kathode. LXVII. Equation of the polarographic wave in the electrodeposition of hydrogen from strong and weak acids

J. Tomeš

Crossref Cited-by Linking

  • Alden Sasha E., Zhang Lingjie, Wang Yunong, Lavrik Nickolay V., Thorgaard Scott N., Baker Lane A.: High-Throughput Single-Entity Electrochemistry with Microelectrode Arrays. Anal. Chem. 2024, 96, 9177. <https://doi.org/10.1021/acs.analchem.4c01092>
  • Wahab Oluwasegun J., Kang Minkyung, Meloni Gabriel N., Daviddi Enrico, Unwin Patrick R.: Nanoscale Visualization of Electrochemical Activity at Indium Tin Oxide Electrodes. Anal. Chem. 2022, 94, 4729. <https://doi.org/10.1021/acs.analchem.1c05168>
  • Wang Jun, Trouillon Raphaël, Lin Yuqing, Svensson Maria I., Ewing Andrew G.: Individually Addressable Thin-Film Ultramicroelectrode Array for Spatial Measurements of Single Vesicle Release. Anal. Chem. 2013, 85, 5600. <https://doi.org/10.1021/ac4009385>
  • Battistel Dario, Daniele Salvatore, Battaglin Giancarlo, Baldo M. Antonietta: A simple electrochemical strategy for the characterisation of defects in alumina-coated metal substrates. Electrochemistry Communications 2009, 11, 2195. <https://doi.org/10.1016/j.elecom.2009.09.029>
  • Patel Bhavik Anil, Arundell Martin, Quek Ruben G. W., Harvey Severin L. R., Ellis Ian R., Florence Margaret M., Cass Anthony E. G., Schor Ana M., O’Hare Danny: Individually addressable microelectrode array for monitoring oxygen and nitric oxide release. Anal Bioanal Chem 2008, 390, 1379. <https://doi.org/10.1007/s00216-007-1803-0>
  • Bortoluzzi Marco, De Faveri Eddy, Daniele Salvatore, Pitteri Bruno: Synthesis of a New Tetrakis(2‐pyridinyl)pyrazine Complex of Gold(III) and Its Computational, Spectroscopic and Electrochemical Characterization. Eur J Inorg Chem 2006, 2006, 3393. <https://doi.org/10.1002/ejic.200600380>
  • Daniele Salvatore, De Faveri Eddy, Kleps Irina, Angelescu Anca: Voltammetric Characterization of Micro‐ and Submicrometer‐Electrode Arrays of Conical Shape for Electroanalytical Use. Electroanalysis 2006, 18, 1749. <https://doi.org/10.1002/elan.200603595>
  • Battiston G. A., Daniele S., Dluzewski P., Gambirasi A., Gerbasi R., Rodriguez A., Szczepanska A.: Platinum Nanoelectrodes Embedded in an Insulating Alumina Matrix: An Innovative Approach. Chemical Vapor Deposition 2005, 11, 187. <https://doi.org/10.1002/cvde.200404196>
  • Holder Mark N., Gardner Catherine E., Macpherson Julie V., Unwin Patrick R.: Combined scanning electrochemical-atomic force microscopy (SECM-AFM): Simulation and experiment for flux-generation at un-insulated metal-coated probes. Journal of Electroanalytical Chemistry 2005, 585, 8. <https://doi.org/10.1016/j.jelechem.2005.07.004>
  • Bley‐Escrich Jordi, Gisselbrecht Jean‐Paul, Michels Martin, Zander Lars, Vogel Emanuel, Gross Maurice: Electrochemical and Spectroelectrochemical Investigations of Mono‐ and Binuclear Cobalt(II) Complexes of “Figure‐Eight” Octapyrrolic Macrocycles. Eur J Inorg Chem 2004, 2004, 492. <https://doi.org/10.1002/ejic.200300499>
  • Ciani Ilenia, Daniele Salvatore: Voltammetric Determination of the Geometrical Parameters of Inlaid Microdisks with Shields of Thickness Comparable to the Electrode Radius. Anal. Chem. 2004, 76, 6575. <https://doi.org/10.1021/ac049041u>
  • Bley-Escrich Jordi, Prikhodovski Serguei, Brandt Carsten D., Bröring Martin, Gisselbrecht Jean-Paul: Electrochemical investigations of tripyrrin complexes. J. Porphyrins Phthalocyanines 2003, 07, 220. <https://doi.org/10.1142/S1088424603000306>
  • Zoski Cynthia G., Rodgers Robert S.: Current Amplification with Signal Averaging at Steady-State Microelectrodes. Electroanalysis 2000, 12, 420. <https://doi.org/10.1002/(SICI)1521-4109(20000401)12:6<420::AID-ELAN420>3.0.CO;2-Q>
  • Howard Enda, Cassidy John F., O'Gorman John: Electroanalysis Using Differential Pulse Methods at a Rotating Disk Electrode. Electroanalysis 1999, 11, 577. <https://doi.org/10.1002/(SICI)1521-4109(199906)11:8<577::AID-ELAN577>3.0.CO;2-J>
  • Daniele Salvatore, Baldo M.Antonietta, Bragato Carlo: A steady-state voltammetric investigation on the oxidation of ferrocene in ethanol–water mixtures. Electrochemistry Communications 1999, 1, 37. <https://doi.org/10.1016/S1388-2481(98)00011-3>
  • Macpherson Julie V., Jones Claire E., Unwin Patrick R.: Radial Flow Microring Electrode:  Investigation of Fast Heterogeneous Electron-Transfer Processes. J. Phys. Chem. B 1998, 102, 9891. <https://doi.org/10.1021/jp9827936>
  • Bond Alan M., Mahon Peter J.: Linear and non-linear analysis using the Oldham–Zoski steady-state equation for determining heterogeneous electrode kinetics at microdisk electrodes and digital simulation of the microdisk geometry with the fast quasi-explicit finite difference method. Journal of Electroanalytical Chemistry 1997, 439, 37. <https://doi.org/10.1016/S0022-0728(97)00370-7>
  • Liu Chong-yang, Snyder Shelly R., Bard Allen J.: Electrochemistry in Near-Critical and Supercritical Fluids. 9. Improved Apparatus for Water Systems (23−385 °C). The Oxidation of Hydroquinone and Iodide. J. Phys. Chem. B 1997, 101, 1180. <https://doi.org/10.1021/jp9627741>
  • Tait Russell J., Finnin Barrie C., Reed Barry L., Bond Alan M.: A study of irreversible electrode processes under steady-state flowing solution conditions with a microelectrode based scanning electrochemical detector. Analytica Chimica Acta 1996, 324, 1. <https://doi.org/10.1016/0003-2670(95)00601-X>
  • Müller R., Lamberts L., Evers M.: The electrochemical oxidation of dibenzo(c,e)-1,2-diselenine to its cation radical. A voltammetric study in acetonitrile at conventional electrodes and microelectrodes. Journal of Electroanalytical Chemistry 1996, 401, 183. <https://doi.org/10.1016/0022-0728(95)04258-X>
  • Müller R., Lamberts L., Evers M.: The electrochemical oxidation of thioselenanthrene in acetonitrile at conventional electrodes and microelectrodes. Journal of Electroanalytical Chemistry 1996, 417, 35. <https://doi.org/10.1016/S0022-0728(96)04754-7>
  • Giménez Maria Dolors, Ariño Cristina, Esteban Miquel: Voltammetry of Pb(II), Cd(II) and Zn(II) ions in the presence of the sulphated polysaccharide λ-carrageenan. Analytica Chimica Acta 1995, 310, 121. <https://doi.org/10.1016/0003-2670(95)00107-B>
  • Shen Huafeng, Senter Robert A., Bott Simon G., Richmond Michael G.: Synthesis of the pentamethylcyclopentadienylruthenium dithiolate complex Cp∗Ru(NO)(dmit). Electrochemical properties and extended Hückel molecular orbital calculations. Inorganica Chimica Acta 1995, 238, 57. <https://doi.org/10.1016/0020-1693(95)04685-3>
  • Yang K., Don M.-J., Sharma D.K., Bott S.G., Richmond M.G.: Synthesis and reactivity investigation of iridium maleonitriledithiolate complexes. Redox studies and extended Hückel molecular orbital calculations on Cp∗ IrL(mnt) (where L = PMe3, PPh3, CN-t-Bu). Journal of Organometallic Chemistry 1995, 495, 61. <https://doi.org/10.1016/0022-328X(94)05385-O>
  • Xia Chun-Gu, Bott Simon G., Richmond Michael G.: Synthesis, molecular structure and electrochemical investigation of the 1,2,5-thiadiazole-3,4-dithiolate-substituted complex Cp*Ru(NO)(tdas). Evidence for nitrosyl bending during reduction. Inorganica Chimica Acta 1994, 226, 267. <https://doi.org/10.1016/0020-1693(94)04095-8>
  • Yang Kaiyuan, Bott Simon G., Richmond Michael G.: Synthesis, X-ray crystal structure, and redox properties of Cp*Ru(NO)(mnt). Journal of Organometallic Chemistry 1994, 483, 7. <https://doi.org/10.1016/0022-328X(94)87140-X>
  • Myland Jan C., Oldham Keith B.: General theory of steady-state voltammetry. Journal of Electroanalytical Chemistry 1993, 347, 49. <https://doi.org/10.1016/0022-0728(93)80080-2>
  • Yang Kaiyuan, Bott Simon G., Richmond Michael G.: Bidentate ligand substitution in PhCCo3(CO)9. Synthesis, molecular structure, and redox reactivity of PhCCo3(CO)7(cis-Ph2PCHCHPPh2. Journal of Organometallic Chemistry 1993, 454, 273. <https://doi.org/10.1016/0022-328X(93)83251-P>
  • Tait Russell J., Bury Peter C., Finnin Barrie C., Reed Barry L., Bond Alan M.: Achievement of the analytically ideal steady-state response at a microelectrode-based scanning electrochemical detector under flow injection analysis and normal-phase chromatography conditions. Anal. Chem. 1993, 65, 3252. <https://doi.org/10.1021/ac00070a014>
  • Cooper J.B., Bond A.M.: Microelectrode studies in the absence of deliberately added supporting electrolyte: solvent dependence for a neutral and singly charged species. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1991, 315, 143. <https://doi.org/10.1016/0022-0728(91)80066-Y>
  • O'Hare D., Winlove C.P., Parker K.H.: Electrochemical method for direct measurement of oxygen concentration and diffusivity in the intervertebral disc: electrochemical characterization and tissue-sensor interactions. Journal of Biomedical Engineering 1991, 13, 304. <https://doi.org/10.1016/0141-5425(91)90112-K>
  • Zoski Cynthia G., Bond Alan M., Colyer Christa L., Myland Jan C., Oldham Keith B.: Near-steady-state cyclic voltammetry at microelectrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1989, 263, 1. <https://doi.org/10.1016/0022-0728(89)80120-2>
  • Oldham Keith B., Myland Janice C., Zoski Cynthia G., Bond Alan M.: Kinetic parameters from steady-state voltammograms at microdisc electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1989, 270, 79. <https://doi.org/10.1016/0022-0728(89)85029-6>
  • Bond Alan M., Oldham Keith B., Zoski Cynthia G.: Theory of electrochemical processes at an inlaid disc microelectrode under steady-state conditions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1988, 245, 71. <https://doi.org/10.1016/0022-0728(88)80060-3>
  • Oldham Keith B.: Theory of microelectrode voltammetry with little electrolyte. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1988, 250, 1. <https://doi.org/10.1016/0022-0728(88)80189-X>
  • Oldham Keith B., Zoski Cynthia G.: Comparison of voltammetric steady states at hemispherical and disc microelectrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1988, 256, 11. <https://doi.org/10.1016/0022-0728(88)85002-2>
  • Ramasamy S. M., Hurtubise R. J.: Room-temperature luminescence properties of p-aminobenzoic acid adsorbed on sodium acetate-sodium chloride mixtures. Anal. Chem. 1987, 59, 2144. <https://doi.org/10.1021/ac00144a029>
  • Oldham Keith B.: The steepness of voltammetric waves. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1985, 184, 257. <https://doi.org/10.1016/0368-1874(85)85532-5>
  • Guidelli Rolando, Pezzatini Giovanni: Diffusion with reactant adsorption at potentiostated stationary and dropping electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977, 84, 211. <https://doi.org/10.1016/S0022-0728(77)80374-4>
  • Voss J., Schlapkohl K.: EPR-untersuchungen an carbonsäureestern—II. Tetrahedron 1975, 31, 2982. <https://doi.org/10.1016/0040-4020(75)80323-1>
  • Srinivasan K., Subrahmanya R.S.: Polarographic and redox potential studies on copper(I) and copper(II) and their complexes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1971, 31, 233. <https://doi.org/10.1016/S0022-0728(71)80062-1>
  • Michlmayr M., Gutmann V.: Das polarographische verhalten von uebergangsmetallverbindungen in dimethylsulfoxid und N,N-Dimethylformamid—II. Zirkonium- und Hafniumverbindungen. Electrochimica Acta 1968, 13, 1671. <https://doi.org/10.1016/0013-4686(68)80151-3>
  • Nürnberg H.W., von Stackelberg M.: Arbeitsmethoden und anwendungen der gleichspannungspolarographie. Journal of Electroanalytical Chemistry (1959) 1961, 2, 181. <https://doi.org/10.1016/0022-0728(61)80021-1>
  • Nürnberg H.W., Von Stackelberg M.: Arbeitsmethoden und anwendungen der gleichspannungspolarographie. Journal of Electroanalytical Chemistry (1959) 1961, 2, 350. <https://doi.org/10.1016/0022-0728(61)85018-3>
  • Imai Hideo: Reaction Rate and Electron Transfer Mechanism in Disproportionation Reaction of Uranium (V). Bulletin of the Chemical Society of Japan 1957, 30, 873. <https://doi.org/10.1246/bcsj.30.873>
  • Tamamushi Reita: On the Mechanism of the Reduction Process of the Hydrogen Ion at the Dropping Mercury Electrode. III. Experimental Part —The Half-wave Potential, Log-plot Analysis and the Reversibility of the Wave. Bulletin of the Chemical Society of Japan 1953, 26, 56. <https://doi.org/10.1246/bcsj.26.56>
  • Tamamushi Reita: On the Mechanism of the Reduction Process of the Hydrogen Ion at the Dropping Mercury Electrode. I. Theoretical Part. Bulletin of the Chemical Society of Japan 1952, 25, 287. <https://doi.org/10.1246/bcsj.25.287>
  • Stackelberg M. V.: Die wissenschaftlichen Grundlagen der Polarographie. Zeitschrift für Elektrochemie und angewandte physikalische Chemie 1939, 45, 466. <https://doi.org/10.1002/bbpc.19390450607>