Supplementary Material
First and Second Cartesian Derivatives of I nternal Coordinates

This section includes complete parameter derivatives (see Egs. 4-5 of the paper) for the three
main internal coordinates, derived in a form suitable for computer implementation. The distances,

angles and torsional angles are defined for the corresponding sequence of 2-4 atoms:
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The only non-zero derivatives of the vectors v; pointing along the bonds are
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with E is a 3x3 unit matrix (E,; =9,), while the second derivatives vanish completely,
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=0, for any {j,kl}. Thus it appears convenient to break down the expressions to the

derivatives of the vectors vi-va.

For the distance between atoms 1, 2,
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we get immediately the first and second derivatives,
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the derivatives are
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For the bond angle [1(1,2,3) ,
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Introducing new symbols o, =v,.v, and o, =v,v, , sothat 0= ] , we can elaborate
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Finally, we want the derivatives for the torsion angle [1(1,2,3,4), defined as
p =sign .arccos% §= sign.arccos(0) , (149)

with vector products a=v, xv, and b =v, xv,. Thesign sign=-1 for av, <0, else sign =1.

We can proceed analogously as for the bond angle, so that
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For the derivatives of o, introducing o = ——, with o, = -a.b and o, = ab, we can use the
Od

formulae 13-14 given above. In addition, we need to know
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Restrained optimization with the Tinker program by the quasi-Newton routine.

In order to compare the optimization documented in Figure 8 to independent optimizer,
analogous constrained energy-minimization was performed in Tinker™? (subroutine minimize) for
the parallel B-sheet peptide. Note, that exactly the same procedure could not be used, since the
optimization to "unknown" values is not implemented in Tinker. With the same starting geometry
(displayed also in Fig. 7) as for the normal mode optimization, the (¢,J) angles were constrained to
(-113,116°) via the Tinker RESTRAIN-DIHEDRAL routine and the energy minimized with the
Amber molecular force field.

As can be seen below, 1) in the initial stages of optimization the values of the angles
oscillates in a similar manner as for the normal mode method and 2) the convergence speed of the
energy is also comparable. Thus we can conclude that the qualitative behavior of the convergencein

both methods is similar and given by the anharmonic components in molecular force field.

Structure of the parallel 3-sheet
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The Dependence of the Multiple Parameter Constrained Optimization (a-helical Peptide of
Figure9) on the Magnitude of the Penalty Parameter

Initial stages of the optimization are displayed only. Apparently, the parameter is too high (10, on
the left hand side) the constraint is too strict and the torsion angles do not change (i.e. change
unacceptably slowly). For medium value of the parameter (10°, in the middle) reasonable
convergence is achieved. The oscillations of the geometry parameters can be somewhat damped by
further decrease of the parameter (10°, on the right), but in this case the constraint is not strong

enough to keep the torsion angles oscillating around same value.
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